Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry.
نویسندگان
چکیده
We have developed methods for studying the interactions between small molecules and RNA and have applied them to characterize the binding of three classes of aminoglycoside antibiotics to ribosomal RNA subdomains. High-resolution MS was used to quantitatively identify the noncovalent binding interactions between mixtures of aminoglycosides and multiple RNA targets simultaneously. Signal overlap among RNA targets was avoided by the addition of neutral mass tags that direct each RNA target to a unique region of the spectrum. In addition to determining binding affinities, the locations of the binding sites on the RNAs were identified from a protection pattern generated by fragmenting the aminoglycoside/RNA complex. Specific complexes were observed for the prokaryotic rRNA A-site subdomain with ribostamycin, paromomycin, and lividomycin, whereas apramycin preferentially formed a complex with the eukaryotic subdomain. We show that differences in binding between paromomycin and ribostamycin can be probed by using an MS-MS protection assay. We have introduced specific base substitutions in the RNA models and have measured their impact on binding affinity and selectivity. The binding of apramycin to the prokaryotic subdomain strongly depends on the identity of position 1408, as evidenced by the selective increase in affinity for an A1408G mutant. An A1409-G1491 mismatch pair in the prokaryotic subdomain enhanced the binding of tobramycin and bekanamycin. These observations demonstrate the power of MS-based methods to provide molecular insights into small molecule/RNA interactions useful in the design of selective new antimicrobial drugs.
منابع مشابه
Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli
Here, we report a resistance mechanism that is induced through the modulation of 16S ribosomal RNA (rRNA) processing on the exposure of Escherichia coli cells to aminoglycoside antibiotics. We observed decreased expression levels of RNase G associated with increased RNase III activity on rng mRNA in a subgroup of E. coli isolates that transiently acquired resistance to low levels of kanamycin o...
متن کاملStructural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria
X-ray crystal structures were determined of the broad-spectrum aminoglycoside-resistance A1408 16S rRNA methyltransferases KamB and NpmA, from the aminoglycoside-producer Streptoalloteichus tenebrarius and human pathogenic Escherichia coli, respectively. Consistent with their common function, both are Class I methyltransferases with additional highly conserved structural motifs that embellish t...
متن کاملBinding of aminoglycoside antibiotics to helix 69 of 23S rRNA
Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome's subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a signific...
متن کاملRNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide.
The codon-anticodon interaction on the ribosome occurs in the A site of the 30 S subunit. Aminoglycoside antibiotics, which bind to ribosomal RNA in the A site, cause misreading of the genetic code and inhibit translocation. Biochemical studies and nuclear magnetic resonance spectroscopy were used to characterize the interaction between the aminoglycoside antibiotic paromomycin and a small mode...
متن کاملBasis for prokaryotic specificity of action of aminoglycoside antibiotics.
The aminoglycosides, a group of structurally related antibiotics, bind to rRNA in the small subunit of the prokaryotic ribosome. Most aminoglycosides are inactive or weakly active against eukaryotic ribosomes. A major difference in the binding site for these antibiotics between prokaryotic and eukaryotic ribosomes is the identity of the nucleotide at position 1408 (Escherichia coli numbering), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 18 شماره
صفحات -
تاریخ انتشار 1999